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Summary. An n-dimensional system with a classical Hamiltonian H(p, q, t) 
may be described by a phase-space distribution function ~(q,p ,  t). The 
dynamical equation for ~(q, p, t) is postulated to be 

~(q,p ,  t + fit) = h -n S ~ e'2~s/h~*(qo,Po, t) dqo dpo 

where 6t is small and the phase angle 27tS/h is defined by 

S = - A H f t  + Aq • Ap, 

with 

A H = H ( p ,  qo, t ) - H ( P o ,  q,t); A q = q - q o ;  A p = p - p o  

The dynamical equation follows from a simple conceptual picture for propa- 
gation of the distribution function in phase space. This equation leads to (1) 
solutions of the form ~(q,p,  t) = h-n/2d/*(q, t)a(p, t)e '~"qp/h where ~b(q, t) 
and a(p, t) are related as Fourier transforms, and (2) the time-dependent 
Schrrdinger equation. 

Key words: Phase-space dynamics - -  Quantum theory - -  Schr6dinger equa- 
tion 

1. Introduction 

The principles of quantum mechanics form the basis for our current description 
of physical phenomena. The conventional presentation of these principles (see 
texts such as [ 1, 2]) typically involves the following postulates: 

1. A physical system at time t can be completely described by a normalized wave 
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function ~k(q, t) whose absolute square gives the probability per unit volume that 
the system is found at position q (the Born postulate). 

2. The wave function $(q, t) evolves in time according to a dynamical equa- 
t i o n - t h e  Schrfdinger equation. The Schrrdinger equation for the standard case 
of a spinless non-relativistic particle with mass m and charge e is given by 

~t  ( h 2 v 2 + i e h A ' v + W )  ~k (1) 
ih = -~m m---c 

where 

e2A 2 
W = 2mc------ ~ + e(o + V. (2) 

Here V is the potential energy (e.g., the Coulomb potential for an electron in a 
hydrogen atom) and the Coulomb-gauge electromagnetic field [3] is character- 
ized by a scalar potential ~b and a vector potential ,4(V. ,4 = 0). (The arguments 
of functions such as ~b(q, t), ,4(q, t), etc. will be omitted unless required for 
clarity.) 

3. For every classical physical quantity F, there is a corresponding linear 
Hermitian operator ~¢ (e.g., the conjugate momentum p = - ihV);  with a proper 
choice of the order of operators corresponding to the product of the momentum 
and the vector potential, the Schrrdinger equation above can be written in the 
usual form: 

ih ~t = H~b 

where/1 is the operator corresponding to the classical Hamiltonian 

- + e4~ + V. (3 )  q, 0 = c 

4. The average value of the physical quantity F(q, p) is given by the expectation 
value 

(Integrals are over all possible values of the coordinates, usually from - ~  to 

Needless to say, each of these postulates is not perceived on initial exposure to 
be a self-evident or even reasonable statement about the nature of physical 
reality (although one becomes more comfortable with these statements as one 
becomes more familiar with them and, probably more important, comes to 
realize their success in accounting for physical phenomena). Perhaps in conse- 
quence, many workers have tried to develop alternative formulations which both 
lead to quantum mechanics and involve more familiar ideas, simpler equations, 
and/or fewer postulates. A sampling of approaches is provided by [4-17]; a 
bibliography which includes criticisms of some of these is to be found in [18]. 
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One important alternative approach to quantum mechanics is the path- 
integral formulation of Feynman [4, 5], in which the first postulate is preserved 
but the second is replaced by a sum-over-paths equation which gives the time 
development of the wave function. Neither the derivatives in the Schrrdinger 
equation nor the operator-replacement postulates are needed in this formulation, 
and the picture is thus somewhat more pleasing. However, both postulate 1 and 
a postulated dynamical equation are required. In addition, the conceptual picture 
underlying the path-integral formulation involves accepting the notion that the 
amplitude (wave function) at a point in space depends on all the paths by which 
a particle might reach that point from some other point. 

Another approach to quantum mechanics which has been developed in various 
forms involves phase-space dynamics, in which a system is described in terms of 
a time-dependent distribution in position and momentum analogous to the usual 
phase-space distribution function of classical statistical mechanics [ 19]. A distribu- 
tion function constructed to be consistent with the basic elements of quantum 
mechanics was first introduced by Wigner [20]. However, the standard Wigner 
distribution is not fully compatible with quantum mechanics; for example, it does 
not yield the square of the eigenvalue of the Hamiltonian operator as the average 
value of the square of the energy when the system is in an eigenstate [21]. 

Properties of the Wigner distribution and other phase-space distribution 
functions have been developed over the years by Moyal [6], Cohen [21-24], 
Mehta [25], and others (e.g., [26-28]). Recent discussions from different perspec- 
tives are to be found in [ 16, 17, 29]. 

The approach to be taken here will be based on the description of a physical 
system by a phase-space distribution function, with a postulated dynamical 
equation for the distribution. That is, the only non-self-evident statement will be 
the proposition (in Einstein's term [30]) of the dynamical equation. The nature 
of the distribution functions and the Schrrdinger equation will follow from the 
dynamical equation. With this approach, it will be seen that there is no need to 
invoke any of the usual postulates of quantum mechanics. 

It is notable that the conceptual picture underlying quantum mechanics has 
been and continues to be of both great interest and considerable controversy. 
The continuing appearance of books and articles on the subject (for recent 
discussions, see [10, 15, 17, 31-37]) over sixty years after introduction of the 
Schrrdinger equation attests to the interest. The controversy essentially revolves 
around the question of the distinction between metaphysics and physical science; 
for a discussion of this issue which is still germane, see the editorial preface to 
Ballentine's 1970 paper [28]. Whether or not predictions of new physical phe- 
nomena will emerge from consideration of possible physical pictures which may 
underly quantum mechanics remains to be seen. The point of view here is that it 
is worthwhile to look for equations based on what appear to be reasonable 
conceptual pictures which are consistent with conventional quantum mechanics 
and which have a minimum number of assumptions or postulates; that is, to 
pursue the goal described by Einstein [30] of seeking as complete as possible a 
comprehension of experimental results through the use of a minimum number of 
primary concepts and relations. 
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2. Phase-space distribution functions 

The dynamics of a physical system (e.g., a particle with kinetic and potential 
energies) is determined by functions of the variables q and p, which are 
interpreted in classical mechanics as the position and conjugate momentum [38]. 
One way of describing the dynamics is in terms of a phase-space distribution 
function ~(q,p, t). Such distribution functions have the following properties 
[22]: 

Property 1. The distribution function is normalized; that is, the total probability 
of finding the particle, the integral of the distribution function over phase space, 
is equal to unity: 

~ ~(q,p, Odqdp = 1. (4) 

Property 2. The probability per unit volume that the particle is found at position 
qo at time t is equal to ~ ( q o , P ,  t)dp; i.e., the integral of the distribution 
function over all values of p corresponding to the position qo. 

Similarly, the probability the particle is found to have momentum P0 at time 
t is determined by the integral ~ ~(q, Po, t) dq. 

Property 3. The average value at time t of any physically-observable property 
F(q, p) is equal to 

F = 0 aq at,. 

As a trivial example, the distribution function for a single classical particle 
moving in one spatial dimension and characterized by a classical Hamiltonian 
H(p, q) can be written as a product of Dirac delta functions: 

~(q, p, t) = 6(q - qd)6(p - Pd) 

where qd and P~t represent the classical path determined by Hamilton's 
equations. 

Even for a non-classical system, the dynamics are characterized by functions 
of the variables q and p; and it may be taken as axiomatic that the system at time 
t may be completely characterized by a (distribution) function ~(q, p, t) of these 
variables. 

In classical mechanics, a distribution function is most commonly interpreted 
as the probability of finding specific q, p values for a multiparticle system, and 
consequently must take on only positive real values. Here the distribution 
function is regarded merely as a function which can be used to characterize the 
dynamics of the system, and there is no need for such a restriction. In addition, 
at present (and most likely forever) for a quantum system it is impossible to 
observe the value of ~(q,p, t) at a single point q,p (this is one way of looking 
at the Heisenberg uncertainty principle). Consequently, it is not necessary that 
~(q,p, t) be positive or even real as long as Properties 1-3 are satisfied. 

The question of so-called "negative probabilities" has been of concern 
beginning with the earliest discussions of quantum mechanics in terms of 
phase-space dynamics [6, 27]; and a number of years ago Cohen [22] showed 
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that quantum mechanics is not consistent with restriction of ~(q, p, t) to positive 
real values. Feynman [39] noted that the issue may not be of concern since the 
measurements which would give physically unreasonable results perhaps cannot 
be made. 

The possibility of having physically unreasonable results is, of course, 
implicit in quantum mechanics. As a simple example, consider the operator 
1 ^ 2 ^ 2  i (p  q + ~2/~2), a Hermitian operator corresponding to the physical quantity 
q2p2. For a one-dimensional harmonic oscillator in the ground state, the 
expectation value of this operator is -h2/4. That is, the product of q2 and p2 
(both of which as squares can take on only positive values) has a negative 
expectation value for this system. This physically unreasonable result is readily 
achieved by allowing "negative probabilities" for sets of values q,p; i.e., by 
allowing negative values of ~(q, p). (There is also an unresolved question as to 
the proper form for the operator which corresponds to the quantity q2p2 
[40,41]; and whether or not expectation values of such quantities can be 
measured remains another open question.) 

3. The dynamical equation for ~(q, p, t) 

For simplicity, discussion will be restricted to the distribution function for a 
single non-relativistic particle in n spatial dimensions with the classical Hamilto- 
nian H(p, q, t) given by Eq. (3). Also, for clarity mathematical details in the 
discussion will be kept to a minimum. 

There are several acceptable forms for the dynamical equation for the 
distribution function; that is, several forms are both consistent with quantum 
mechanics and lead to the Schrrdinger equation. Again for simplicity, discussion 
will be restricted to one of these. The relationship between this choice and other 
possibilities will be discussed, as will possible ways of distinguishing among 
them. 

Proposition. A physical system can be characterized by a normalized distribution 
function ~(q, p, t) which evolves in time according to 

~(q, p, t + ft) = ~ S ~ e'~S/h~*(qo, Po, t) dqo dpo (5) 

where fit must be small enough that ~(q,p,  t) changes only slightly in the time 
interval (otherwise, an integration or a successive set of  calculations is to be made) 
and for the classical Hamiltonian of  Eq. (3) the phase angle 2zS/h is defined by 

S = - A H f t  + Aq.  Ap (6) 

with 

A H = H(p, qo, t) -- H(Po, q, t) (7) 

Aq=q- -qo;  Ap =p- -po .  

Equation (5) initially appears no more reasonable or self-evident than the 
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usual set of postulates of quantum mechanics (although it has the advantage of 
being more compact). Actually, as shown below, the form of Eq. (5) follows 
from a simple conceptual picture for the propagation of the distribution func- 
tion in phase space. Before this picture is described, it may be useful to note 
that (a) the 6t ~ 0  limit for Eq. (5) will be used in Sect. 4 to determine the 
form of ~ ( q , p ,  t) and (b) expansion of Eq. (5) to first order in 6t will be 
shown in Sect. 5 to lead to the Schr6dinger equation (note that the right-hand 
side of Eq. (5) includes the factor e-a~,J,v~t/h = 1 - i2zc A H  6t /h - . . . ) .  

Although the dynamical equation (5) can stand alone as a formal alterna- 
tive to the usual postulates of quantum mechanics, its form becomes plausible 
on the basis of the following conceptual picture. Consider a point qo,Po in 
phase space with a value for the distribution function ~(qo,Po,  t ) =  R o e  i°o at 
time t, where Ro is the magnitude of ~(q0,Po, t). At the slightly later time 
t + 6t, it is postulated that the magnitude Ro of the distribution function has 
propagated equally to all points in phase space. However, the phase angle 0 at 
different points is given by 

2nS 0 - ~ -  0o. (8/ 

That is, the contribution of point qo,Po at time t to the distribution function at 
point q ,p  at time t + 6t will be proportional to Ro e i°. 

Roughly speaking, the hypothesis is that the initial point qo,Po acts as the 
source of a wave in phase space. The phase "received" by other points depends 
on the phase of the initial point and a quantity which depends on the time interval 
and the positions of the two points in phase space. The quantity S has units of 
action and is to be divided by a unit of action h (which will turn out to be Planck's 
constant in order to be consistent with experiment; i.e., with the Schrrdinger 
equation). 

The complex conjugate ~*(qo ,Po,  t) appears in Eq. (5) because the initial 
phase 0o is reversed in Eq. (8) in order to obtain time-reversal symmetry. The term 
S defined by Eq. (6) is unchanged if the roles of qo,Po and q , p  are reversed and 
the sign of 6t is changed. Thus reversal of the initial phase results in consistency 
between the phase (0 = 2zcS/h - 0o) of the contribution of point q0, P0 to q, p in 
the time interval t --. t + 3t and the phase (00 = 2nS/h  - O) of the contribution of 
q , p  to qo,Po in the time interval t + fit ~ t .  

It is interesting to note that for several common cases the quantity S reduces 
to even simpler forms: 

(a) For a free particle for which the Hamiltonian is simply the kinetic energy, S 
is given by 

s = A# -A~ 

that is, the scalar product of the changes in the four-position c7 = (q, ict) and in 
the four-momentum/~ = (p, iE/c) between the two points [42]. 
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(b) For a particle with no electromagnetic field and a potential energy V(q), S is 
given by 

S =  - A L  6t + Aq" Ap 

AL = L(p, q) - L(p o, qo) 

where L(p, q) is the Lagrangian 

= l p 2 _  
L~, q) 2m v(q). 

If we now switch to the viewpoint of a point q, p in the phase space at time 
t + 6t, its distribution function N(q,p,  t + 6t) will be the integrated sum of the 
contributions as described above from all points in phase space, each with its 
appropriate magnitude and phase. This integration, with the inclusion of a 
normalization factor, yields Eq. (5). 

4. The form of ~(q, p, t) 

In the limit fit--*0, Eq. (5) yields the identity 

~(q,  p, t) = ~ ~ S e'2~ ~q " ~P/h~*(qo, Po, t) dqo dpo. (9) 

One now tries to find functions ~(q ,p ,  t) consistent with Eq. (9). Consider the 
trial function in which the variables q and p are in effect separated as follows: 

~(q ,p ,  t) = h-"/2~j*(q, t)a(p, t) e i2nq't'/h. (10) 

To avoid confusion in the discussion to come, the notation anticipates the result 
in the next section that ~k(q, t) and a(p, t) will be identified as the normalized 
coordinate-space and momentum-space wave functions, respectively; and the 
powers of h in Eqs. (5) and (10) anticipate the factors required for consistency 
with the normalization condition of Eq. (4). However, at this point these 
functions are regarded as arbitrary functions whose properties are defined by the 
requirement that ~(q ,p ,  t) be consistent with Eqs. (4) and (5). 

Substituting Eq. (10) into Eq. (9) gives 

~b*(q, t)a(p, t) e '2~q .p/h 

1 ~ e '2~(q-q°)'<e-p°)/h[~(qo, t)a*(po, t) e -'2~q° .t,o/h] dqo dpo. 
=h--~ S 

Collecting terms and separating the integrals yields 

~k *(q, t) h-n/2 ~ ~b(qo, t) e-,2~,o . p/h dqo 
h -n/2 ~ a*(po, t) e -i2~q .po/h dp ° - a(p, t) (11) 

The left-hand side of Eq. (11) is a function of only q and t, and the 
right-hand side is a function of only p and t. Hence both sides must be functions 
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of only t; i.e., a function f(t)  constant with respect to q and p for each value of 
t. One then has 

~k*(q, t) = ~  ~ a*(Po, t )e  -'2"¢'r°/h dpo 

1 
a(p, t) - " t  )n ~ ~k(qo, t) e-a~qo .p/h dqo. 

The function f ( t )  is arbitrary since it does not affect ~(q, p, t), and may be 
chosen simply to be 1. Thus the trial function of Eq. (10) is consistent with Eq. 
(5) if ~k(q, t) and a(p, t) are related as Fourier transforms [43]: 

~(q,  t) = h --n/2 ~ a(p, t) e '2~¢ .t,/h dp (12) 

a(p, t) = h - , /z  ~ ~(q, t) e -i2"q .p/h dq. (13) 

The normalization requirement Eq. (4) results in 

S h -'/2~b*(q, t)a(p, t) e '2"q .p/h dq dp = ~ ~b*~k dq = 1 

and, similarly, if the integration with respect to q is performed first: 

S a*adp  = 1. 

That is, conventional normalization of ¢(q, t) and a(p, t) ensures consistency 
with Eq. (4). 

The function of Eq. (10) (or its complex conjugate or its real part), with 
~b(q, t) satisfying the Schrfdinger equation, been considered as a quantum- 
mechanical phase-space distribution function by several workers [23, 25, 27], 
usually as a consequence of the standard postulates of quantum mechanics. As 
another approach, Pitowsky [15] and Gudder [17] have postulated that this form 
represents the physically allowed form of the distribution function. The approach 
here has been to show that the form of Eq. (10) follows from the postulated 
dynamical equation (5). 

5. Time evolution of ~(q, p, t); the SchrOdinger equation 

To determine how ~(q, p, t) evolves in time, one could begin with a distribution 
function consistent with Eq. (10) at an initial time t, use Eq. (5) to find each 
value of the distribution function at a slightly later time t + fit, and carry out a 
successive set of calculations. A familiar result is obtained by taking an infinites- 
imal time interval 6t ~ dt, in which case Eq. (5) becomes 
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Invoking Eq. (9) yields 

i27r dt 
~(q,p,  t + dt) = ~(q ,p ,  t) - ~ -  ¥ IS AH e'2"a" aP/h~*(qo,Po, t) dqo dpo. 

or 
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ih a~  1 
(q,p, t) = ~ A H e ' 2 " a " a ~ ' / h ~ * ( q o , P o  , t) dqodpo. (14) 

2re at 

The time dependence of the functions ~b(q, t) and a(p, t) can be obtained by 

where W(q) is defined by Eq. (2). Substitution of Eq. (10) into Eq. (14) yields 

i h a  
2n at [~O*(q, t)a(p, t) e a'~q .p/h] 

1 S AHea'~(q-q°) - ~ ~ (P-P°)/h[~h(qo, t)a*(po, t) e-i2~,o .po/h] aqo dpo. 

Making use of the identity 

I x ' f ( x )  e-'w~xy/h dx = { ih  ~" a" \ 2 n /  ay----; If(x) e-i2rcxy/h dx 

and Eqs. (12)-(13), and rearranging leads to 

(16) 

ih a~b* + 1 r h2 Vz~F* ieh A ] 
L-Fm --mc .V~F*+ W~F* 

_ ihaa 1 Ip~m e 1 t- a a + z - - - p  . T (17) 
a at mc 

where 

z = h -,/2 1 W(qo, t)qt(qo, t) e -,2.,o .p/h dqo 

T = h-,/2 1 A(¢o, t)~h(qo, t) e-i2~qo, l,/h dqo. 

The left-hand side of Eq. (17) is a function of only q and t, and the right-hand 
side is a function of only p and t. Hence each side must be a function of only t, 
say g(t). It is simplest to set g(t) equal to zero, in which case one obtains 

d¢* h2 2 . ieh 
. . . .  V ~, - - - A  . V ~ * +  W~* -- ih at 2m mc 

A H = I 2 ~ p 2 -  W ( q ) ] - I 2 ~ p ~ -  W ( q o ) l - ~ c [ p  "A(qo, t ) - p o ' A ( q ,  t)] (15) 

substituting Eq. (10) and the form of the Hamiltonian for the specific system 
under consideration. The result will be obtained here for the single-particle 
Hamiltonian of Eq. (3). For this case, AH defined by Eq. (7) can be written as 
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o r  

ih h + ieh A 
O---t- = -2--m [TZ~, • V~, + W~ (18) 

m e  

Oa p2 e 
ih-~=~--~ma + Z - - - - p  " r .  (19) 

m e  

If the constant h is set equal to Planck's constant, Eqs. (18) and (19) become the 
standard configuration-space and momentum-space time-dependent Schr6dinger 
equations for a particle in a potential and an electromagnetic field (Eq. (1) and 
its Fourier transform). 

If one had chosen g(t) to be a non-zero function, solutions of Eq. (17) would 
have been of the form 

~l*(q,  t) = •*(q, t) e - '2n S g(t) dt/h 

a(p, t) = b(p, t) e z2n S g(O dt/h 

where the functions x(q, t) and b(p, t) would satisfy the configuration-space and 
momentum-space Schr6dinger equation, respectively. The distribution function 
~ ( q , p ,  t), average values, and consistency with quantum mechanics are un- 
changed by the choice of g(t). 

6. Properties of ~(q, p, t) 

It is instructive to illustrate that the properties of the distribution function 
~ ( q , p ,  t) are consistent with standard quantum mechanics. For simplicity, 
consider a one-dimensional system. 

Property 2. The probability per unit length a particle is found at position q0 is 
given by 

~(qo, P, t) dp = ~ h -1/2~,*(qo, t)a(p, t) e i2xq°p/h dp 

= ~k*(qo, t )$(qo,  t) 

the usual quantum-mechanical result. 

Property 3. Let us examine several average values to show that the usual 
quantum-mechanical results are obtained. 

(a) The average value of qn. 
i 

qn = S ~ q ~ ~(q,  P, t) dq dp = ~ ~ qn [h - 1/2~,. a e'2~qP/h] dq dp 

= ~ q ' ~ * ~  dq. 

Alternatively, making use of Eq. (16) yields 

q--~ ~ a / h  O \  ~ 
: \ oP/I~71] a* dp. 
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(b) The average value of pn. 

= n [h - 1 / 2  P ~ S ~ P" ~(q, P, t) dq dp = ~ ~ p ~b * a e'2~q~'/h] dq dp 

= ~pna*a dp 

 dq. 

(c) The average value of H2(p, q), with 
p2 

a= m+V 
and where ~b(q, t) is an eigenfunction of/q,  

h 2 ~2q/ 
2m Oq 2 = (E - V)~k (20) 

- - ( p 2 ) 2 [ h - m ~ * a  
H2 = ~ ~ ~mm + V e i2~zqp/h] aq dp. 

Making use of Eqs. (16) and (20) yields 
- -  [ h  4 ~4 h2V~2 ] 
H 2 = ~ k *  4-m2 0q 4 m Oq 2 b V2 ~b dq 

and after integrating by parts one obtains 

H2 = I ~k * [(E - V) 2 + 2 V(E - V) + V 21 O dq = E 2. 

It is also worth noting that the distribution function ~(q, p, t) is consistent 
~,~with the uncertainty principle; as shown by Cohen [22], one can readily find the 

relationship 

, , (q - gl)2(p - , )2~(q,  p, t) dq dp >/ ( h )  2. 

7 .  D i s c u s s i o n  

Several comments should be made about the conceptual picture presented here 
and its consequences. First, the essence of the postulated dynamical equation (5) 
is that the distribution function at a point qo,Po propagates in time with equal 
magnitude but different phases to all points in phase space. This hypothesis 
uncouples momentum from its classical interpretation as mass times velocity, 
since a classical distribution function at q0, Po would propagate in a small time 
6t only to qo +Po ~t/m, p o -  VV~t .  However, this hypothesis is compatible with 
the form of the Hamiltonian as simply a function of two independent variables, 
with their interdependence, if any, resulting from the dynamical equations of 
motion. In the present picture, the interdependence may be regained through 
average values according to the usual quantum-mechanical result. 

Second, the goal here has been to show that solutions of the postulated 
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dynamical equation (5) are consistent with quantum mechanics; that is, to 
reproduce the results of  quantum mechanics using a minimum number of 
assumptions or postulates ("primary concepts and relations" [30]). As noted 
earlier, the standard results of quantum mechanics are both consistent with and 
follow from several alternative forms for the dynamical equation and the 
distribution function. For example, changing the sign of the phase angle 
2rrS/h ~ -2rrS/h in Eqs. (5) and (8) leads to solutions of the form 

h -,/2~/(q, t)a*(p, t) e-a~q .p/h 

with no changes in the properties (q", p", etc.) discussed in the preceding section. 
In fact, none of these properties is affected if the distribution function is any 
normalized linear combination of ~(q ,p ,  t) and its complex conjugate. In 
particular, the distribution function and hence average values do not take on 
complex values if it has the form (Re ~ + ~ Im ~) ,  where ~ is any real constant 
and ~ satisfies Eqs. (4) and (5). 

There is no need to propose which of these alternatives is correct, since there 
appears to be no current experimental test of such a hypothesis. On the other 
hand, predicted average values of quantities such as qp, q2p2 , . . .  ("mixed 
moments" of the distribution) do depend on the choice among these alternatives. 
Development of methods for determining average values for such quantities 
would lead to a choice among the alternatives and a test of  the hypotheses of 
Eqs. (5) and (8). 
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